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a b s t r a c t

Collisions of ions with residual gas atoms in a Penning trap can have a strong influence on the trajectories
of the ions, depending on the atom species and the gas pressure. We report on investigations of damping
effects in time-of-flight ion-cyclotron resonance mass spectrometry with the Penning trap mass spec-
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trometers ISOLTRAP at ISOLDE/CERN (Geneva, Switzerland) and SHIPTRAP at GSI (Darmstadt, Germany).
The work focuses on the interconversion of the magnetron and cyclotron motional modes, in particular
the modification of the resonance profiles for quadrupolar excitation due to the damping effect of the
residual gas. Extensive experiments have been performed with standard and Ramsey excitation schemes.
The results are in good agreement with predictions obtained by analytical continuation of the formulae
for the undamped case.
on motion

ass spectrometry

. Introduction

Penning traps have set milestones in high-precision mass spec-
rometry of stable and short-lived nuclei [1–3], including most
ecent investigations beyond the proton drip line [4] and of trans-
ermium nuclides [5] as well as the discovery of a new radon
sotope [6]. The mass of a charged particle is linked to the cyclotron
requency in a homogeneous magnetic field, �c = qB/(2�m). In a
enning trap [7] charged particles are confined by static electric
nd magnetic fields. The ion movement consists of three harmonic
igenmotions: the axial oscillation, the magnetron drift, and the
yclotron motion with a modified frequency. In an ideal Penning

rap the movement occurs in perfect vacuum, but in reality resid-
al gas is always present. This causes undesirable complications,
ince the oscillatory motions of the ions in the trap are damped
ith accompanying energy loss and frequency shifts of the eigen-
otions [8–10]. Sometimes, on the other hand, the damping force
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is of experimental use, such as for mass-selective buffer-gas cooling
[11].

In time-of-flight ion-cyclotron resonance (TOF-ICR) [12] mass
spectrometry damping of the radial modes shows up in an
unwanted line broadening of the resonance as well as in a reduced
resonance depth. Both effects increase the uncertainty of the fre-
quency determination. For precision mass measurements the effect
of damping on the line profile of a standard quadrupolar excitation
has already been addressed by König et al. [13]. The adaption of
Ramsey’s method of separated oscillatory fields for excitation of the
ion motion in a Penning trap [14–18], which is meanwhile routinely
used for precision mass measurements of short-lived radionuclides
[19–21] required an extension to more general excitation profiles.
In this context a new mathematical approach to damping phenom-
ena using analytical continuation of the cyclotron frequency has
been introduced recently [8].

In this article we first present the typical experimental setup of
TOF-ICR mass spectrometry. Then the explicit expressions includ-
ing damping effects are derived for the TOF-ICR resonance line
shapes for conventional one-pulse excitation and for symmetric

two-pulse excitation by quadrupolar rf-fields. In the experimental
section data from the Penning trap mass spectrometers ISOLTRAP
[22] and SHIPTRAP [23] are compared with the predicted line
profiles including damping effects. In particular, two important
phenomena have been addressed. The first one is the periodic inter-

dx.doi.org/10.1016/j.ijms.2010.09.030
http://www.sciencedirect.com/science/journal/13873806
http://www.elsevier.com/locate/ijms
mailto:george@nscl.msu.edu
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onversion of the magnetron and cyclotron mode due to an external
uadrupolar rf-field at exactly the resonance frequency. A contin-
ous excitation results in a Rabi-like oscillation between the two
odes with an exponentially decreasing amplitude. In the ideal

ase, neglecting any damping, the conversion time �c depends only
n the coupling strength of the external field, which is propor-
ional to the rf-field amplitude. Damping due to residual gas affects
he conversion time as well as the amplitude of the Rabi oscilla-
ions. Since the time scale of the damping in the cyclotron mode
s of the same order as the conversion time, a considerable loss in
adial energy is expected to be measurable. The second subject con-
erns the TOF-ICR resonance line shapes of two different excitation
chemes, namely one- or two-pulse excitation.

. Experimental setup

The experimental data presented in this article have been
btained with the Penning trap mass spectrometers ISOLTRAP at
SOLDE/CERN and SHIPTRAP at the velocity filter SHIP/GSI. The
xperimental procedure at ISOLTRAP is as follows: A 60 keV contin-
ous ion beam delivered from the stable alkali reference ion source

s accumulated in a linear gas-filled radio-frequency quadrupolar
RFQ) ion beam cooler and buncher [24]. After a few milliseconds
he accumulated ions are transferred in a bunch to the first Penning
rap, a cylindrical 4.7 T preparation trap used for mass-selective
uffer-gas cooling to remove isobaric contaminations. The prepa-
ation trap is followed by the precision trap within a 5.9 T magnet,
here the actual frequency determination takes place by means of

he TOF-ICR technique. Ions are detected by a channeltron detector
25], which is placed behind the two traps. Here, helium-gas was
sed in the RFQ as well as in the preparation trap and 39K+ ions have
een selected to perform the experiments. In order to suppress the
as flow from the preparation to the precision trap a vacuum pump
s installed at the transfer section.

The SHIPTRAP facility is, similarly to ISOLTRAP, a double-
enning trap mass spectrometer. For the measurements performed
t SHIPTRAP the ion species 133Cs+ from a stable alkali reference ion
ource is injected into the first cylindrical Penning trap with a mag-
etic field strength of 7 T. It is used for isobaric cleaning and further
ooling of the ion motion. The second cylindrical trap, placed in the
ame magnet, but separated by a 5 cm long pumping barrier for dif-
erential pumping [26], is used for the TOF measurement. Because
nly differential pumping is used to decrease the pressure on the
ay from the first to the second trap, the gas flow of the buffer-

as in the first trap can be effectively used to adjust the residual
as pressure in the precision trap for the experiments described in
his paper. Behind the precision trap a micro-channel-plate (MCP)
etector is placed for particle detection. Some frequencies, which
re important in the context of damping effects, are listed in Table 1.

Both experiments use the well-established TOF-ICR detection
ethod to determine the cyclotron frequency �c. To this end, the

on ensemble is captured in the center of the precision Penning

rap in order to avoid initially large amplitudes of the radial and
xial modes. All ions are excited by an azimuthal, dipolar rf-field
t their magnetron frequency, such that they have a defined mag-
etron radius R−(0) [27]. Subsequently, a quadrupolar driving field

able 1
igenfrequencies of the singly-charged ions for the precision Penning traps of
SOLTRAP (magnetic field strength B = 5.9 T, trap voltage U = 10 V, characteristic trap
imension d2 = 104.5 mm2) and of SHIPTRAP (B = 7.0 T, U = 10 V, d2 = 331.2 mm2).

Experiment Ion species �c/MHz �z/kHz �−/Hz

ISOLTRAP 39K+ 2.3 72 1078
SHIPTRAP 85Rb+ 1.3 88 1350
SHIPTRAP 133Cs+ 0.8 47 1350
Fig. 1. Time-of-flight ion-cyclotron-resonance data taken at ISOLTRAP for 39K+. The
excitation time was � = 300 ms, the damping constant � = 1 Hz. The solid line shows
a fit of the theoretically expected line shape to the data according to Eq. (36). For
further details see text.

is applied at the cyclotron frequency. In the absence of damping
a suitably chosen amplitude Aq and duration �conv leads to a full
conversion from the magnetron into the cyclotron mode assuming
the frequency of the quadrupolar driving field is �q = �c [28,29]. The
final cyclotron radius is then as large as the magnetron radius prior
to the quadrupolar excitation R+(�conv) = R−(0). Due to the much
higher frequency of the cyclotron mode as compared to the mag-
netron mode, the conversion is accompanied by an increase of the
radial kinetic energy by about six orders of magnitude.

This energy can be probed via a time-of-flight measurement.
A resonance curve as shown in Fig. 1, obtained by scanning the
excitation frequency around the expected cyclotron frequency, is
recorded. The cyclotron frequency can be extracted from a fit of the
expected resonance line shape to the experimental data [13,15].
For this purpose the fitting routine incorporates the following set
of free parameters: The cyclotron frequency �c represents the cen-
ter frequency of the resonance, initial magnetron radius R−(0) and
cyclotron radius R+(0) determine the radial position and energy
before the quadrupolar driving field is applied. The amplitude and
duration of the rf-field have to be chosen such that a full conversion
from magnetron into cyclotron motion is obtained. If this require-
ment is not fulfilled the resonance line shape will change [13].
Therefore a parameter called “degree of conversion” is introduced.
As discussed below, when damping forces are acting the conver-
sion process must compensate energy losses in the cyclotron mode
due to damping and the maximal degree of conversion no longer
represents a full conversion of the magnetron mode. The damping
force is accounted for by the damping coefficient � , which is treated
here also as a free parameter.

3. Theoretical framework

3.1. Basic considerations

The buffer-gas damping of the ion motion in a Penning trap
has been studied by various authors [7,9,10,13,30] who assumed a
damping force linear in the ion velocity �v, �F = −2m��v. The damping
coefficient � can be deduced from the ion mobility K and depends
on the choice of buffer-gas, its pressure and temperature, and the
ion-atom collision cross-sections [31],

q q (p/p0)

2m� =

K
=

K0
·

(T/T0)
, (1)

where q is the electric charge of the ions and where the reduced ion
mobility K0 refers to normal atmospheric pressure p0 = 105 Pa and
room temperature T0 = 300 K. Typical values for K0 range from 10
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o 20 cm2/V s for ions in helium and from 1 to 3 cm2/V s for ions in
itrogen, the higher values being for light ions and the lower values

or heavy ions [32,33].
The damping force is included in the Newtonian equations of

otion. Their solution provides first of all information about the
on trajectories, while other physical quantities of interest, such
s line shapes for the interconversion of magnetron and cyclotron
otion, have to be derived from the trajectory functions. For an

deal hyperbolic Penning trap the Newtonian equations of motion
ead [8]

¨ + 2�ẋ − ωcẏ − 1
2

ω2
z x = 0, (2)

¨ + 2�ẏ + ωcẋ − 1
2

ω2
z y = 0, (3)

¨ + 2�ż + ω2
z z = 0, (4)

ith the cyclotron frequency �c = ωc/(2�), and the axial frequency
z = ωz/(2�). The latter is related to the electrostatic potential dif-
erence U between the trap electrodes and the geometric trap
arameters r0, z0 by ωz =

√
4qU/(m(2z2

0 + r2
0 )) (r0 = inner radius of

he ring electrode, z0 = shortest distance of the end electrodes from
he trap center).

Cylindrical Penning traps, used for example in the SHIPTRAP
etup, differ from the ideal hyperbolic Penning trap by additional
on-harmonic terms in the electric potential. Theoretical results
erived for hyperbolic traps are still applicable in cylindrical traps,
rovided that (a) the axial ion motion is negligible, and (b) the
adius of the azimuthal motion remains small compared to the trap
adius r0. Correction terms can be derived by perturbation methods
here necessary.

Recently it was noted [8], using u = x + iy, that in the complex
ombination of the Eqs. (2) and (3) for the azimuthal motion the
arameters ωc and � occur only in the combination ω̄c = ωc − 2i� ,

¨ + i(ωc − 2i�)u̇ − 1
2

ω2
z u = 0. (5)

Defining the complex variable ω̄c = ωc − 2i� , this opens up the
ossibility to use analytic continuation in ω̄c , from the real value

¯ c = ωc to the complex value ω̄c = ωc − 2i� , to derive results for
amped ion motion in the azimuthal modes from correspond-

ng results for undamped ion motion, without having to deal in
etail with the trajectory functions. The applicability of the method
equires two conditions to be satisfied:

(a) The damping force must be linear in the ion velocity,
b) there is no coupling between the axial motion and the two

azimuthal modes of the ion motion.

The following subsections explain in more detail how the
ethod is applied to derive line shapes for the resonant con-

ersion of pure magnetron motion into cyclotron motion due
o quadrupole excitation, using the standard 1-pulse excitation
cheme or symmetric 2-pulse Ramsey excitation scheme, start-
ng from the formulas for the undamped motion and obtaining the
esults for damped motion by analytic continuation.

Considering an ideal hyperbolic Penning trap without damping,
et us denote by �+ = ω+/(2�) the modified cyclotron frequency, and
y �− = ω−/(2�) the magnetron frequency. As is well known we

ave the relations ω+ = (1/2)(ωc + ω1) and ω− = (1/2)(ωc − ω1) with

1 =
√

ω2
c − 2ω2

z . “Analytic continuation in ω̄c” means that instead
f the real quantity ωc we consider the complex quantity ω̄c = ωc −
i� and vary � from the initial value � = 0 (undamped case) to the
ctual experimental value of the damping constant � . This implies
ss Spectrometry 299 (2011) 102–112

the replacements

ωc → ω̄c = ωc − 2i�, (6)

ω1 → ω̄1 =
√

ω̄2
c − 2ω2

z = �(ω̄1) + i�(ω̄1) = ω̃1 − i �̃1, (7)

ω± → ω̄± = 1
2

(ω̄c ± ω̄1) = �(ω̄±) + i�(ω̄±) = ω̃± − i �̃±. (8)

Here �(ω̄i) and �(ω̄i) denote the real and imaginary parts of the
complex number ω̄i. We also use the more convenient notation ω̃i =
�(ω̄i) and �̃i = −�(ω̄i). Straightforward algebra yields the explicit
expressions

ω̃1 = �(ω̄1)

= 1√
2

√√
(ω2

1 − 4�2)
2 + 16�2ω2

c + (ω2
1 − 4�2),

(9)

�̃1 = −�(ω̄1)

= 1√
2

√√
(ω2

1 − 4�2)
2 + 16�2ω2

c − (ω2
1 − 4�2),

(10)

in agreement with results derived by conventional methods (see
[10], p. 206). To summarize, by the analytic continuation proce-
dure we obtain complex frequencies, whose real parts represent the
eigenfrequencies in the proper sense, and whose imaginary parts
represent the decay constants of the eigenmodes of the damped
Penning trap,

ω̃± = 1
2

(ωc ± ω̃1), (11)

�̃± = 1
2

(2� ± �̃1). (12)

Note that �̃− ≤ 0 so that exp[−�̃−�] is increasing with increasing �.
The solution of the complex equations of motion for the ideal

damped Penning trap, Eq. (5), results in

u(�) = R+e−i(ω̄+�+�+) + R−e−i(ω−�+�−)

=
√

(2h̄/mω1)
(

˛+(�) + ˛∗−(�)
)

.
(13)

Here R± =
√

2h̄/(mω1)|˛±(0)| denotes the initial cyclotron or mag-
netron radius, respectively, the �± are phase parameters, the
asterisk means complex conjugation, and the ˛±(�) are the complex
oscillator amplitudes, introduced in [15] as the classical analogues
of the quantum mechanical annihilation operators for oscillator
quanta. They obey the differential equations

˙̨ +(�) = −iω̄+˛+(�), (14)

˙̨ −(�) = +iω̄∗
−˛−(�), (15)

with the solutions

˛+(�) = |˛+(0)|e−i(ω̄+�+�+)

= |˛+(0)|e−�̃+� · e−i(ω̃+�+�+),
(16)

˛−(�) = |˛−(0)|e+i(ω̄∗
−�+�−)

= |˛−(0)|e−�̃−� · e+i(ω̃−�+�−).
(17)

Here we see that damping factors arise from phase factors with
complex frequencies. Therefore throughout this paper a careful
treatment of phase factors is of utmost importance.

For � 	 ωc the right hand side of Eq. (10) can be expanded as a
power series, its first two terms approximate decay constant �̃1 by

2�ωc

(
1
(

2�ωc

)2
)

�̃1 ≈ √
ω2

1 − 4�2
· 1 −

2 ω2
1 − 4�2

+ . . .

≈ 2�
ωc

ω1
·
(

1 − 2�2ω2
c

ω4
1

+ . . .

)
.

(18)
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Fig. 2. The excitation function P+(�, g, �) (Eq. (37)), plotted as a function of � and �/g,
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4g2 + ı2. With damping the Rabi frequency becomes a complex
quantity. Defining

ı̄ = ı + i�̃1, (27)

2 Note the occurrence of ω̄∗
− instead of ω̄− in Eq. (24). This is required, because

analytical continuation based on Eq. (5) relates to ˛+(�) and ˛∗
−(�) (see Eqs. (16) and

(17)), whereas the equations for quadrupole excitation relate to ˛+(�) and ˛−(�).
sing the approximation �̃1 ≈ 2�(ωc/ω1) (Eq. (19)). For �/g = 0 the function P+(�, g,
) represents a Rabi oscillation, for small �/g we see damped Rabi oscillations, for

arger �/g only the first conversion peak survives the damping effects.

For the frequencies listed in Table 1 we obtain the ratios
c/ω1 = 1.00098, 1.0046, and 1.0035, respectively. Assuming more-
ver � ≈ 1 Hz, as in experiments discussed below, we find that the
econd term in Eq. (18) is smaller than the first term by a factor of
pproximately 10−12. Therefore, considering that the experimental
rror of the damping constant � in our experiments was in the 10
ercent range (see Section 4), for the frequency ranges of interest

n this paper the first order approximation is excellent,

˜1 ≈ 2�ωc√
ω2

1 − 4�2
≈ 2�

ωc

ω1
, (19)

˜± ≈ �

(
1 ± ωc√

ω2
1 − 4�2

)
≈ ±2�

ω±
ω1

. (20)

It is equivalent to approximations used previously by König
t al. [13]. Results obtained by them should therefore coincide with
esults obtained by our method of calculation.

Damping of the ion motion due to the presence of residual gas
toms dissipates part of the energy contained in the cyclotron and

agnetron modes into kinetic energy of the residual gas. In most
xperimental setups we have ω+ � ω−, therefore with Eq. (20) we
nd in general a strong exponential decrease of the amplitude of the
yclotron mode and a slow exponential increase of the amplitude
f the magnetron mode.

.2. One-pulse quadrupole excitation

The measurement with the TOF-ICR method requires first the
reparation of the ions in an almost pure magnetron orbit, secondly
he resonant conversion of the magnetron motion into cyclotron

˛+(�) = exp
[
− i

2
(ω̃1 + ωq)�

]
· exp[−��] ×

[(
cos

ω̄R

2

˛−(�) = exp
[
− i

2
(ω̃1 − ωq)�

]
· exp[−��] ×

[
−i

2g

ω̄R
sin
otion by a pulse of rf-quadrupole radiation with a frequency
q = ωq/2� near to the cyclotron frequency �c and with duration
, and finally a time-of-flight measurement of the ion energies. As
iscussed in greater detail below (see also Fig. 2), for rather weak
amping the interconversion of the azimuthal motional modes
ss Spectrometry 299 (2011) 102–112 105

resembles a Rabi type damped oscillation, but for stronger damping
only the first maximum of the cyclotron mode survives. To obtain
the maximum signal strength, the pulse duration � must equal the
conversion time �c, which is defined as the time at which the degree
of conversion of the magnetron mode into the cyclotron mode
reaches its first maximum. The cyclotron frequency �c, which is the
main object of our interest, is deduced from a fit of the resonance
curve to the TOF data as a function of the excitation frequency.

In Ref. [15] quadrupole excitation has been treated primarily
from the quantum mechanical point of view as a process of conver-
sion of single quanta of the cyclotron oscillator into quanta of the
magnetron oscillator and vice versa. In this way the appropriate
effective interaction Hamiltonian could be selected, which led to
equations of motion for the annihilation operators of the oscillator
quanta,

ȧ+(�) = −iω+a+(�) − ig e−i(ωq�+�q)a−(�), (21)

ȧ−(�) = +iω−a−(�) − ig e+i(ωq�+�q)a+(�), (22)

and corresponding equations for creation operators of the quanta.
Here ωq and �q denote the angular frequency and phase of the
applied quadrupole rf-pulse and g is a coupling parameter pro-
portional to the amplitude of the rf-pulse. Classical quantities
were then obtained as expectation values for coherent oscillator
states, for example the complex oscillator amplitudes ˛±(�) were
obtained as expectation values of the annihilation operators a±(�)
for cyclotron and magnetron quanta. Since the interaction with the
quadrupolar field has been established in [15] it suffices for the
present discussion to adopt the classical view point. Combining
the Eqs. (14), (15) with the classical analogs of Eqs. (21), (22) our
treatment of damped ion motion shall be based on the following
Newtonian equations of motion

˙̨ +(�) = −iω̄+˛+(�) − ig e−i(ωq�+�q)˛−(�), (23)

˙̨ −(�) = +iω̄∗
−˛−(�) − ig e+i(ωq�+�q)˛+(�). (24)

These equations describe in the limit g → 0 the ion motion in
the ideal Penning trap with damping, Eqs. (16), (17) above, and in
the limit � → 0 the quadrupole excitation in the undamped Penning
trap, corresponding to Eqs. (21), (22). Either by explicit construction
of the solution of the Eqs. (23), (24) or by the analytic continuation
technique applied to Eqs. (21), (22) one finds the complex oscillator
amplitudes that describe quadrupole excitation in the Penning trap
with damping,2

i
ı + i�̃1

ω̄R
sin

ω̄R�

2

)
˛+(0) − i

2g

ω̄R
sin

ω̄R�

2
e−i�q ˛−(0)

]
, (25)

ei�q ˛+(0) +
(

cos
ω̄R�

2
− i

ı + i�̃1

ω̄R
sin

ω̄R�

2

)
˛−(0).

]
(26)

The quantity ı = ωq − ωc denotes the detuning of the quadrupole
rf-pulse from the cyclotron frequency. In the absence of damping
the conversion process is controlled by the Rabi frequency ωR =√
The replacement of ω̄− with ω̄∗
− in Eq. (24) is mathematically equivalent with the

mutual exchange of 2� and �̃1. Unfortunately, this point has escaped the attention
of the author of [8] (M.K.), but the exchange 2� � �̃1 in the definitions of ı̄ and ω̄R

and in Eqs. (48)–(56) of [8] corrects all results in Section 5 of [8]. Due to the large
experimental uncertainty in the damping constant it is practically not possible to
distinguish between 2� and �̃1.
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he construction of the solutions (25), (26) requires

ω̄R =
√

4g2 + ı̄2 =
√

4g2 + ı2 − �̃2
1 + 2iı�̃1

= �(ω̄R) + i�(ω̄R) = ω̃R − i�̃R.
(28)

A successful experiment requires a quadrupolar amplitude
trong enough to overcome the damping effects. We therefore
ssume 4g2 > �̃1. Denoting by ωR =

√
4g2 + ı2 the Rabi frequency

ithout damping we then find for the real and imaginary parts of
¯ R

ω̃R = �(ω̄R)

= 1√
2

√√
(ω2

R − �̃2
1 )

2 + 4�̃2
1 ı2 + ω2

R − �̃2
1 ,

(29)

�̃R = −�(ω̄R)

= ∓ 1√
2

√√
(ω2

R − �̃2
1 )

2 + 4�̃2
1 ı2 − (ω2

R − �̃2
1 ),

(30)

he sign of the square root in Eq. (29) has been chosen so that
(ω̄R) = ω̃R ≥ 0, and in the last equation the upper and lower signs
old for positive and negative ı, respectively. Note that at the exact
esonance (ı = 0) the square root on the right side of Eq. (30) van-
shes for damping constants satisfying 4g2 ≥ �̃2

1 , so that we have
˜R|ı=0 = 0. The case 4g2 ≤ �̃2

1 requires an analogous discussion.
For later use we note

ω̄R|2 =
√

(ω2
R − �̃2

1 )
2 + 4�̃2

1 ı2. (31)

Let us discuss now the experimentally expected conversion line-
hape, which describes the degree of conversion as a function of
he detuning ı = ωq − ωc of the rf-frequency from the cyclotron fre-
uency. In the quantum mechanical description without damping
15] one considers the numbers of quanta present in the cyclotron
nd magnetron modes at given time �, N+(�) and N−(�), respec-
ively. Quadrupolar excitation converts one type of quanta into the
ther, but leaves the sum invariant. In TOF-ICR mass spectrometry
ne prepares an initial state at time � = 0 in which only magnetron
uanta are present, N−(0) = Ntot and N+(0) = 0. Quadrupolar exci-
ation of the cyclotron mode at frequencies near the cyclotron
requency ωc is then described by the degree of conversion after a
adiation pulse of duration �, i.e., the relative number of cyclotron
uanta then present in the system, N+(�)/Ntot. In the quantum
echanical picture these numbers are given by the expectation

alues of the number operators a†
±(�)a±(�), which correspond in

he classical picture to the absolute squares of the complex oscil-
ator amplitudes |˛±(�)|2 = mω1/(2h̄) · R2±(�). These concepts are
eneral and apply also when damping is present. We can therefore
efine the degree of conversion by a single pulse of radiation of
uration � and detuning ı by

1(ı; �, g, �) = |˛+(�)|2
|˛−(0)|2 = R+(�)2

R−(0)2
. (32)

Inserting into this general definition our solution (25) of the
quations of motion with damping we obtain

1(ı; �, g, �) = e−2�� · 4g2

|ω̄R|2
∣∣∣sin

(
ω̄R�

2

)∣∣∣2. (33)

This result assumes pure magnetron motion as initial state
˛+(0) = 0, ˛−(0) /= 0) and is independent of the initial phases �± of
he oscillators and �q of the quadrupolar rf-field. The observation
f phase-dependent effects requires a sufficiently strong compo-

ent of cyclotron motion in the starting configuration. With the
ubstitutions (28)–(31) and the identities

in(ω̄R�/2) = sin(ω̃R�/2) · cosh(�̃R�/2) − i cos(ω̃R�/2) · sinh(�̃R�/2),

(34)
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cos(ω̄R�/2) = cos(ω̃R�/2) · cosh(�̃R�/2)+i sin(ω̃R�/2) · sinh(�̃R�/2),

(35)

and with cosh2 x = 1 + sinh2 x this becomes

F1(ı; �, g, �) = e−2�� · 4g2√
(4g2 + ı2 − �̃2

1 )
2 + 4�̃2

1 ı2

·
[

sin2 ω̃R�

2
+ sinh2 �̃R�

2

]
. (36)

To obtain the conversion line shape one has to plot this expres-
sion as a function of ı while keeping �, g, � constant. As in the
undamped case � = 0 the maximum of the central peak lies at
ı = 0, i.e., there is no line shift due to damping. The first term in
the square bracket in Eq. (36) is present already in the undamped

case � = 0. With its zeroes at ı = 2g
√

4n2 − 1 (n = 1, 2, 3, . . .) this
term is mainly responsible for the excitation lineshape. In the pres-
ence of damping effects the positions of these zeroes are only
marginally affected by the damping parameter � . They are shifted
to ı ≈ 2g

√
4n2 − 1 − �̃2

1 /(16g2) − 3�̃4
1 /(256g4), the central peak of

the conversion lineshape is slightly broadened. Finally, the sec-
ond term in the square brackets is not present in the undamped
case � = 0, but it grows in importance with increasing �. As long as
�̃2

1 ≤ 4g2 the second term vanishes at the resonance frequency, i.e.,
for ı = 0 (see remarks after Eq. (30)), but for ı /= 0 it adds a positive
contribution to the curve defined by the first term. It thus raises the
excitation line shape, instead of zeroes we see minima at a non-zero
positive level (for examples see the right hand side of Fig. 7).

It is of special interest to investigate the interconversion of
modes at the exact resonance frequency ωc. The relative number
of cyclotron quanta present at time �, i.e., N+(�)/Ntot, is given by Eq.
(36) as

P+(�, g, �) = F1(ı; �, g, �)|ı=0

= e−2��

1 − (�̃1/2g)2
· sin2

(√
1 − (�̃1/2g)2 · g�

)
.

(37)

Similarly, the relative number of magnetron quanta present at
time �, i.e., N−(�)/Ntot, follows from Eq. (26) to be

P−(�, g, �) = e−2�� · 1

1 − (�̃1/2g)2

·
(√

1 − (�̃1/2g)2 ·
(

cos

√
1 − (�̃1/2g)2 · g�

)

+ (�̃1/2g) · sin

(√
1 − (�̃1/2g)2 · g�

))2

. (38)

These expressions describe, at the exact resonance frequency
and starting with pure magnetron motion, the excitation of the
cyclotron and magnetron modes as a function of the pulse duration
of the quadrupole radiation. In the following we shall use the term
excitation function to typify these functions.

For applications to TOF-ICR mass spectrometry the first con-
version maximum is of special interest, because here we achieve
the best possible degree of conversion of the magnetron into the
cyclotron mode in the presence of damping. The time �c(g, �)
when this maximum is reached is defined as conversion time with
damping. The extrema of the function P+(�) are deduced from the

condition (dP+(�)/d�) = 0, resulting in

cot

(√
1 −
(

�̃1/(2g)
)2 · g� − n�

)
= �/g√

1 −
(

�̃1/(2g)
)2

, (39)
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Fig. 4. The first maximum of the excitation function P+(�, �/g), plotted for different
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ith n = 0 for the first maximum and n = 2, 4, 6, . . . for subsequent
axima. Solving this condition for the time variable �, using n = 0,
e obtain the following expression for the ‘conversion time with
amping’

c(g, �) = 2√
4g2 − �̃2

1

· arccot

(
2�√

4g2 − �̃2
1

)
. (40)

or � = 0 this is �c(g, 0) = �/(2g). The expression (40) is continuous at
= �̃1/2, but to avoid complex quantities we shall use for g < �̃1/2

he equivalent expression

c(g, �) = 2√
�̃2

1 − 4g2
· arcoth

(
2�√

�̃2
1 − 4g2

)
. (41)

We begin the discussion of the excitation functions by showing
n Fig. 2 a 3D-plot of P+ as function of the dimensionless time vari-
ble � = �/�c(g, 0) = (2g/�)� and of the ratio �/g. For �/g = 0 we have
+ = sin((�/2)�), this pure sinus function represents the Rabi oscilla-
ion which is well known from treatments without damping effects.

e have complete conversion into the cyclotron mode for � = 1, 3, 5,
. ., and complete reconversion into the magnetron mode for � = 2,
, 6, . . .. For small values of �/g the oscillation is damped, but still
ell visible. For stronger damping, say for �/g > 0.4, only the first

onversion peak is present, subsequent oscillations are suppressed
y the exponential damping factor.

For a more detailed examination of the excitation functions P+

nd P− we have plotted them in Fig. 3 as functions of the dimen-
ionless variable � and for �/g = 0.2. The curves for P+(�, g, �) (solid
ine) and for P+(�, g, �) (long dashed line) both represent damped
abi oscillations. Note that the first maximum of P+ occurs earlier
han in the undamped case, at a value � < 1, while the first mini-

um of P− occurs later than in the undamped case, at a value � > 1.
his is a consequence of the competition of the conversion process
ith the exponential damping. To understand this better consider

n Fig. 3 the three intervals A, B, C. In the interval A (0 < � < �c(g,
)/�c(g, 0)) the function P+(�) is increasing, the gain due to conver-
ion is greater than the loss due to damping. Beyond the maximum,
n interval B, the conversion of magnetron into modified cyclotron
otion continues until no magnetron quanta are left, however the
oss of modified cyclotron quanta due to damping is greater than
he gain from conversion, thus the function P+(�) is now decreas-
ng and the peak value is shifted toward lower �. In interval C
econversion of modified cyclotron into magnetron motion occurs

0 1 2 3 40.0

0.2

0.4

0.6

0.8

1.0

P
(θ

)

A B
C

(a)

(b)

(c) (d)

θ

ig. 3. Interplay of damping with the interconversion of oscillator quanta [Eqs. (37)
nd (38)]. The figure presents (a) P+(�) = relative number of cyclotron quanta (solid
ine), (b) P−(�) = relative number of magnetron quanta (long dashed line), and (c)
+(�) + P−(�) = sum of all oscillator quanta (short dashed line), as functions of the
imensionless time variable � = �/�c(g, 0) = (2g/�)�. The curves have been calcu-

ated for fixed values of quadrupole coupling g = 3 Hz and with a damping constant
= 0.6 Hz (�/g = 0.2). (d) For comparison the relative number of cyclotron quanta in

he absence of damping is also shown (thin black line).
values of �/g (from top to bottom 0, 0.1, 0.2, . . ., 0.9). The line connecting the peak
values has been calculated from Eq. (40).

until we have again pure magnetron motion. The distance between
subsequent maxima of P+(�) is determined by the Rabi frequency
ωR =

√
4g2 − �̃2

1 (see Eq. (39)). Since the Rabi frequency is smaller
than in the undamped case (ωR = 2g), the distance between sub-
sequent maxima becomes somewhat larger. The decrease of the
sum of the two excitation functions P+ + P− (short dashed line) is
not simply exponential, but follows a more complicated pattern
which reflects the fact that the modified cyclotron mode suffers a
fast decay with decay constant �̃+ > 0, while the magnetron mode
slowly increases, �̃− < 0.

The fact that damping shifts the first conversion peak toward
shorter conversion times as compared to the case without damp-
ing is expressed by �c(g, �) < �c(g, 0) = �/(2g). At the same time the
maximum degree of conversion is lower than without damping.
For strong damping this effect can be sizeable. To illustrate this
effect we have plotted in Fig. 4 the first maximum for 10 different
values 0 ≤ �/g ≤ 0.9. The line connecting the peak values has been
calculated from Eq. (40).

The preceding discussion assumed the coupling parameter g,
in more practical terms the amplitude of the quadrupole radiation
pulse, to be fixed in the beginning, and the duration of the radiation
pulse then to be chosen so as to produce the maximum degree of
conversion into the cyclotron mode according to Eq. (40). For prac-
tical applications, however, as in the experiments described below,
one rather prefers the reverse order: First to choose a pulse dura-
tion �conv according to the requirements of the specific experiment,
and then to adjust the amplitude of the pulse so that a maximal
conversion signal for a given value of � is achieved. That implies
that the coupling parameter g must be calculated numerically as a
root of the equation �conv = �c(g, �), more explicitly

�conv = 2√
4g2 − �̃2

1

· arccot

(
2�√

4g2 − �̃2
1

)
. (42)

This procedure is illustrated in Fig. 5, which shows for a fixed value
of � the surface F1(ı; �conv, �) plotted as function of ı′ = ı/2� and
�conv, seen in a view showing high values of �conv in front and small
values of � in the back. A cut through the figure at a given
conv
constant �conv represents the line profile for one-pulse quadrupole
excitation with the amplitude (i.e., the coupling parameter g) cho-
sen to give the maximum signal. Fig. 5 displays for increasing
conversion time �conv the almost exactly exponentially decreasing
height of the resonance signal, the shrinking of the width, and the
disappearance of the fringe maxima except the central one.
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4.1. Continuous excitation at the exact cyclotron frequency

The main topic of interest is the modification by damping effects
of the Rabi-like oscillation pattern of the degree of conversion as

Fig. 6. (a) Mean time-of-flight results are displayed as functions of 	 for differ-
ent helium gas flow rates in the preparation trap of SHIPTRAP. The ion species
ig. 5. Conversion of magnetron into cyclotron energy, F1(ı; �conv, �), as a function
f the frequency detuning ı′ = ı/(2�) and the excitation time �conv . Cuts through the
urface at constant �conv are the one-pulse resonance signals with the quadrupole
mplitude (g) chosen to give the maximum signal.

.3. Ramsey excitation

For symmetric Ramsey excitation two pulses of rf-quadru-pole
adiation with driving frequency ωq ≈ ωc and of equal duration �1
re applied, which are separated by a waiting interval of dura-
ion �0. The total excitation time is �tot = 2�1 + �0. The observed line
hape is described by a profile function

2(ı; �0, �1, g, �) = |˛+(�tot)|2
|˛−(0)|2 = R+(�tot)

2

R−(0)2
. (43)

The right hand side is evaluated by computing ˛+(�tot) by means
f Eqs. (25) and (26). The initial values ˛±(0) of an ion trajectory
re determined by the ion’s initial position and initial velocity in
he Penning trap, see Eqs. (103) and (104) in [15]. Let us assume

+(0) = 0 and ˛−(0) = ei�−
√

mω1/(2h̄)R−(0). Then there are three
teps: starting from the initial values ˛±(0) one calculates ˛±(�1)
sing the coupling parameter g /= 0. The phase of the quadrupole
eld at time t = �1 is ei(ωq�1+�q). With these results as initial data
ne calculates the changes during the waiting period �0, using a
oupling parameter g = 0. During the waiting period there is no
nterconversion of the oscillator modes, the moduli |˛±(�)| remain
onstant, but the phases of the oscillator modes are changing. The
esults obtained for time t = �1 + �0 are used as initial data for the
nal step, in which we calculate the effect of the second radiation
ulse. The result is

2(ı; �0, �1, g, �) = e−2�(2�1+�0) · 4g2

|ω̄R|2

∣∣∣∣cos
ı̄�0

2
sin (ω̄R�1)

+ ı̄

ω̄R
sin

ı̄�0

2
(cos (ω̄R�1) − 1)

∣∣∣∣
2

. (44)
For the evaluation of the right hand side we have to use ı̄ =
+ i�̃1, Eqs. (28)–(31), the identities (34), (35) with � = 2�1, and

in(ı̄�0/2) = sin(ı�0/2) · cosh(�̃1�0/2)+i cos(ı�0/2) · sinh(�̃1�0/2),

(45)
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cos(ı̄�0/2) = cos(ı�0/2) · cosh(�̃1�0/2)−i sin(ı�0/2) · sinh(�̃1�0)/2.

(46)

The same results are obtained by applying the method of analytic
continuation (with ωR → ω̄∗

R) directly to Eq. (90) of [15].
Setting up the numerical evaluation of Eq. (44) requires some

care, e.g., one must avoid numerical inaccuracies due to the evalu-
ation of differences of almost equal large numbers.

4. Experimental results

Our experimental investigation of damping effects has focused
on two important aspects of TOF-ICR mass spectrometry: (a) the
degree of conversion of the magnetron into the cyclotron motional
mode for continuous quadrupolar excitation at the exact cyclotron
frequency. (b) The influence of damping on the line profiles of con-
ventional one-pulse excitation and of two-pulse Ramsey excitation
as a function of the damping constant � .
used in these measurements was 133Cs+. The lines are fits of the theoretical curves
to the data. (b) Here, the calculated degree of conversion of magnetron into
cyclotron energy at the exact resonance of the quadrupolar excitation, F1(ı = 0 ; �, g,
�) = (R+(�)/R−(0))2 (Eq. (37)), as a function of time in units of the conversion time
�c(g, �) (Eq. (40)), i.e., time is plotted as the dimensionless variable 	 = �/�c(g, �). The
damping coefficients � are corresponding to those extracted from the experimental
time-of-flight curves in (a) (color online).
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escribed by Eq. (37), especially the exponential decrease of the
eight of the maxima with increasing excitation time and the shift
f the positions of the maxima and minima (see Fig. 3).

The experiment described here has been performed at the SHIP-
RAP facility. 133Cs ions from the reference ion source were stored
n the precision trap and prepared in a pure magnetron mode. To
his end they were exposed to a background helium pressure which
s responsible for the damping of the ion motion. This pressure is

ainly due to the flow of helium buffer-gas from the preparation
rap to the precision trap, although the gas flow is suppressed by a
ifferential pumping barrier [26]. Since only differential pumping
ampers the gas flow between the two traps, the gas flow rate to
he preparation trap can be used to effectively control the pressure
n the precision trap.

A series of measurements has been performed as follows.
t constant background pressure quadrupolar rf-radiation at the
yclotron frequency �c is applied. The rf-amplitude is adjusted
n such a way that a maximal conversion signal, and thus the
trongest contrast in the time of flight of excited and non-excited
ons, is obtained after an excitation time �c(g, �) = �conv = 100 ms
Eq. (40)). Then for various excitation times � between 0 and 600 ms
he radial energy of the ions is probed via a time-of-flight measure-

ent. The measurement is repeated several times with different

alues of the background pressure. Note that the background pres-
ure in the environment of a Penning trap mass spectrometer is
sually stable enough that the adjustment of the rf-amplitude has
o be performed only once during a measurement period of a few
ays.

ig. 7. Left: time-of-flight ion-cyclotron-resonance spectra measured at ISOLTRAP with 3

he second row, and 1.5 s (e, f) in the third row, respectively. The solid lines are fits of the
he initial magnetron mode into the cyclotron mode for a standard one-pulse excitation, F
oefficient used for the calculations has been extracted from the corresponding resonanc
ss Spectrometry 299 (2011) 102–112 109

The observed damped Rabi oscillations, measured for three dif-
ferent gas flow rates, are shown in Fig. 6(a), where the mean
time of flight is a function of 	 = �/�c(g, �). Each of the oscilla-
tion curves is generated by approximately 4000 ions. Fits of the
theoretical line shape have been added to the data points and the
damping coefficients � have been extracted. The theoretical line
shape of the time-of-flight curve is directly derived from a non-
linear conversion of Eq. (37). For further details see [13]. A gas
flow rate of 4 × 10−3 mbar l/s (diamonds), which is in the order of
the normal flow rate during a mass measurement at SHIPTRAP,
yields a damping coefficient of � = 0.7 Hz (black line). Gas flow
rates of 1 × 10−2 mbar l/s (open circles) and 2.5 × 10−2 mbar l/s (red
squares) yield damping coefficients of � = 1.0 Hz (green line) and
� = 2.0 Hz (red line), respectively. The extracted damping coeffi-
cients are used to calculate the corresponding energy conversion
curves shown in Fig. 6(b). The exponential decrease of the maxima
of the radial energy as time advances is apparent. The increase of
the Rabi period 2�/

√
4g2 − �̃2

1 with increasing � , here expressed
in an occurrence of the maxima at larger 	 = �/�c(g, �) (see Fig. 6),
is clearly observable and agrees with the expectations.

4.2. Conventional one-pulse excitation
Of greater interest for the application to mass measurements
are the modifications of the resonance profiles by damping effects.
The line profile is a direct consequence of the applied excitation
pattern. For conventional one-pulse excitation the quadrupolar rf-
field is applied with constant amplitude for a time interval �conv.

9K ions. The excitation time is �conv = 100 ms (a, b) in the first row, 900 ms (c, d) in
theoretical curves to the experimental data. Right: the degree of conversion from

1(ı; �conv, g, �) = (R+(�conv)/R−(0))2 for different excitation times �conv . The damping
e curves in the left column and is � = 1.0 (0.1) Hz.
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his situation has been analyzed theoretically in Section 3.2. Here
e report on the corresponding experiments. TOF-ICR curves of

9K ions as shown in Fig. 1 have been recorded at ISOLTRAP in the

resence of an enhanced background pressure. The pumping power

n the setup was reduced to increase the pressure from initially a
ew times 10−8 mbar to 1.1 · · · 1.3 × 10−6 mbar over a period of five
ays. Conventional TOF-ICR curves with various excitation times

ig. 8. Left time-of-flight ion-cyclotron-resonance spectra of 133Cs+ taken at SHIPTRAP
a, b) �1 = 100 ms, �0 = 200 ms, (c, d) �1 = 200 ms, �0 = 400 ms, (e, f) �1 = 300 ms, �0 = 60
2(ı; �0, �1, g, �) = (R+(�c(g, �))/R−(0))2 for Ramsey excitation pattern of two excitation
he timings of the measured curves on the left side.
ss Spectrometry 299 (2011) 102–112

ranging from 100 ms up to 3 s with approximately 20,000 ions in
each resonance have been recorded.

For a predetermined excitation time � the amplitude of
conv

the quadrupolar field is adjusted so that the conversion signal is
maximal, in other words, the amplitude is adjusted so that �conv cor-
responds to the conversion time defined by Eq. (40), �conv = �c(g, �).
The damping coefficient � depends by Eq. (1) on the ion mass, ion

with fits of the theoretical curves (lines) to the data points. Excitation times:
0 ms, (g, h) �1 = 900 ms, �0 = 1800 ms. Right: theoretical conversion line shapes
periods �1 interrupted by a waiting time �0 [Eq. (44)]. The timings correspond
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obility, buffer-gas species, buffer-gas temperature and buffer-gas
ressure. For 39K ions moving at room temperature in a helium
uffer-gas of pressure 1.1 × 10−6 mbar and with an ion mobility
0 ≈ 21.5 [cm2/V s] (see [34]) one estimates � ≈ 0.63 Hz (see also
q. (57) in [8]). For the temperature dependence of K0 see [35].
ith this value of � the equation �conv = �c(g, �) can now be solved

or the coupling parameter g, using Eq. (40). Now all information
eeded for the calculation of theoretical conversion profiles from
q. (36) is at hand. After transformation into TOF-profiles these are
tted to the experimental TOF-curves.

Three examples of such curves with �conv = 100 ms, 900 ms, and
.5 s excitation time are shown in the left column of Fig. 7. The
ight column shows the corresponding theoretical energy conver-
ion profiles for a damping constant � ≈ 1. The coupling parameters
for the three curves are calculated from Eq. (40) to be g ≈ 15.08 Hz,
.17 Hz, 0.515 Hz, respectively.

The modification due to damping of the shape of the conver-
ion profile is governed, according to Eq. (36), by the dimensionless
atio �/g. For our three curves we find the values �/g = 0.066 (weak
amping), 0.856 (medium strong damping), and 1.94 (very strong
amping), respectively. Furthermore, all data have been evaluated
wice: first, using the equations of motion found in König et al.
13], up to now used in the fitting routine. Second, the equations
escribed in the theory section of this article have been used. No
ifference in the extracted resonance frequency and its uncertainty
as been found for all measured curves, which span the pressure
egime of a Penning trap applied for precision mass measurements.

.3. Ramsey-type two-pulse excitation

The theoretical prediction for the line shape of symmetric two-
ulse Ramsey excitation including damping effects, Eq. (44), has
een tested at the SHIPTRAP facility using 133Cs ions. Excitation
chemes of two excitation periods �1 interrupted by a waiting time
0 have been applied to measure TOF resonances with relatively
igh background pressure corresponding to a damping coefficient
= 0.7 Hz. The conversion times �c(g, �) = 2�1 are obtained by a

uitable adjustment of the amplitude of the quadrupole rf-field,
hich is equivalent to a suitable choice of the coupling parameter

. According to Eq. (40) the chosen conversion times �c(g, �) = 200,
00, 600, and 1800 ms (see Fig. 8) together with � = 0.7 Hz imply
≈ 7.41, 3.49, 2.15, and 0.49 Hz, and thus ratios �/g ≈ 0.09, 0.20,
.33, and 1.43. These ratios control the shape of the conversion
rofiles. Measured TOF profiles are shown in Fig. 8 (left column)
nd compared to the corresponding theoretical conversion pro-
les calculated from Eq. (44) (Fig. 8 (right column)). We conclude
hat the theoretical treatment presented in Section 3 describes the
xperimental data in a correct way.

. Conclusion

The resonant conversion of magnetron motion into cyclotron
otion by application of a quadrupolar rf-field with a frequency

t the cyclotron frequency is a process of prime importance for
ass spectrometry with Penning traps. In this paper we have

nvestigated theoretically and experimentally how this process is
nfluenced by damping due to the inevitable presence of neutral
as in the Penning trap. The theoretical considerations were based
n the assumption that the damping force is linear in the velocity.
his assumption seems reasonable given the excellent agreement

ith the experimental data. Using the recently developed method

f analytical continuation with respect to the cyclotron frequency
8] we were able to present for the first time closed analytical
xpressions describing the conversion line shape for conventional
ne-pulse excitation and for symmetric two-pulse or Ramsey exci-

[
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tation in the presence of damping. Choosing the rf-amplitude so
as to produce a maximal conversion signal for a given excitation
time �conv we find that the signal decreases exponentially due to
damping with increasing excitation time, while the shape of the
resonance depends on the ratio �/g of the damping constant �
and the coupling parameter g, loosing structure as this ratio varies
from 0 to 1 and beyond. The theoretical results have been checked
against experimental data taken at the ISOLTRAP and SHIPTRAP
facilities with various ion species and under a variety of pressure
conditions. No significant deviations from the theoretical descrip-
tion have been found. Thus the results can be used with confidence
in applications of Penning trap mass spectrometry.
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